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| Introduction

: For predicting decoherence of transverse Ising Models |

(we evaluate. .. '

I - Deep Recurrent Neural Networks (RNNs) and
Transformers

- 2 - 10 spin setups with up to 500 timesteps

- Different ‘program state’ representations for the NNs

 We turther provide, with the goal of extending quantum
Icomputer coherence time. ..
I - Sample predictions for the models

I
| - Comparison of efficacy of different approaches for
I

prediction
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LSTM Proof of Concept
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' Takeaways
I
| Progress: Overcome Issues:

| - Implemented ESN baseline, LSTM
proof of concept, and scaled up to

SOTA transformer models

- Implemented sweeps across

parameters for different models

- Implementing encoder/decoder to

strengthen LSTM prediction

- Improved models by generating full

information simulated data

- Previous work was less accurate for
small scale systems, improved with

RNNSs

- New work shows more lower MSE
predictions after hyperparameter

tuning

| Research Hypothesis
IAttention-based SOTA models
:should be able to predict the
decoherence of a transverse
linteracting Ising Model with 10

:spins over 500 discrete steps to
achieve a 1E-3 MSE.

I
I Summary of Data Collection
:Simulation data was generated using
Qutip to evolve N spins over 500
Idiscrete time steps. Tests were
lperformed on both simple and

I : :

(transverse Hamiltonians. The mean
square error between predicted states
land Qutip modeled data 1s used to

:compare efficacy of models over
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| Future Research Goals |

( - Extend model prediction to 2D lattice y

| - Ablation testing across LSTM / ESN |

| /Transformer models for cost :
efficiency

- Observable data tests for practical
application
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