Additive manufacturing enables the construction of near-arbitrary structures with the help of computational tool-path planning and print material properties. We explore an application of the technology to targeted repairs, such as mending holes or cracks, on 3D printed parts by using conformal tool-patting, combining the precision of additive manufacturing with the strength and homogeneity of material adhesion. Repair configurations vary in shape, size, material, infill and loading type are tested in 3-point bending for structural strength and strain. We provide and summarize the collected data in addition to a structural analysis and optimization of parameters relevant to reparative 3D printing.

Research Question:

How effective is repairing 3D printed structures with conformal 3D printing?

Background:

- 3D printing is typically used in quickly prototyping parts but has been used to repair damaged parts.
- Reparative 3D printing is known to repair damaged parts with the help of computational tool-path planning and print material properties.

Methodology:

- 3D printed parts are tested using the 3-point bending test, which provides data on the structural strength, failure method, and deformation under load.
- We investigated 3D printed objects and full information about a region of damage (such as a cavity), a conformal print fills and repairs the damage while meeting repair shape and infill constraints.

Results:

- An unexpected result is that the repaired parts perform better than their undamaged counterparts.
- Force sensor mounted on press measures applied load.
- Strain gauge attached to bottom of sample.
- Rounded D-shafts at supports.
- Load and stress/strain curve.

Discussion:

- An effectiveness rating better compares the load held by repaired vs. undamaged specimen. Percent effectiveness is defined as the load held normalized by the load held by the average undamaged specimen.

Future Work:

- T1 design testing while different infills pattern, allowing an analysis of which infill pattern may be more effective than others.
- Testing various damage types in order to improve repair methods in addition.
- Testing new materials such as ABS and Carbon Fiber PLA.
- Multivariate data analysis for optimization of printing, structural, and material parameters.
- Physical analysis supporting why repaired structures in compression perform better than their damaged counterpart.
- Study of parameters vital in obtaining information about damaged regions (as opposed to a solid print which would be compromised in this work).

In general, reparative printing has many applications. Provided that these printing methods have well-studied limitations, automated reparative printing is a promising material-efficient alternative to whole replacement and/or manual repair.